所属分类:web前端开发
探究绝对定位精度评价指标的技术原理,需要具体代码示例
摘要:
绝对定位是现代导航系统中非常重要的一环。为了评估绝对定位的精度,需要使用一些评价指标。本文将介绍一些常用的绝对定位精度评价指标,并详细解释它们的技术原理。同时,还会给出一些具体的代码示例,帮助读者更好地理解这些评价指标以及如何实现它们。
1.2 本文目的
本文的目的是介绍一些常用的绝对定位精度评价指标,并详细解释它们的技术原理。同时,为了帮助读者更好地理解这些指标,我们还会给出一些具体的代码示例。通过阅读本文,读者可以更深入地理解绝对定位的精度评价过程。
import numpy as np def rmse(estimated, true): error = estimated - true sqr_error = np.square(error) mean_error = np.mean(sqr_error) return np.sqrt(mean_error)
2.2 MAE(平均绝对误差)
MAE也是一种常用的绝对定位精度评价指标。它与RMSE类似,不同之处在于它使用的是误差的绝对值。MAE的计算公式如下所示:
import numpy as np def mae(estimated, true): error = estimated - true abs_error = np.abs(error) mean_error = np.mean(abs_error) return mean_error
import numpy as np def rmsd(estimated, true): diff = estimated - true sqr_diff = np.square(diff) mean_diff = np.mean(sqr_diff) return np.sqrt(mean_diff)
3.2 RPE(相对姿态误差)
RPE也是一种常用的多维数据集间距离度量指标。它可以在相对姿态的估计中度量目标位置的误差。RPE的计算公式如下所示:
import numpy as np def rpe(estimated, true): abs_diff = np.abs(estimated - true) abs_diff_norm = np.linalg.norm(abs_diff, axis=1) mean_error = np.mean(abs_diff_norm) return mean_error
参考文献:
[1] Zhang, H., Pillai, S. U., & Nebot, E. M. (2020). Performance Evaluation Metrics for Mobile Robot Localization. arXiv preprint arXiv:2005.02011.