python教程:Python利用Pandas进行数据分析的方法详解

 所属分类:php教程

 浏览:182次-  评论: 0次-  更新时间:2022-09-30
描述:更多教程资料进入php教程获得。 本篇文章给大家带来了关于Python的相关知识,其中Pandas是最流行的用于数据分析的 Python 库。它提供高度...
更多教程资料进入php教程获得。

程序员必备接口测试调试工具:立即使用
Apipost = Postman + Swagger + Mock + Jmeter
Api设计、调试、文档、自动化测试工具
后端、前端、测试,同时在线协作,内容实时同步

【相关推荐:Python3视频教程 】

Pandas是最流行的用于数据分析的 Python 库。它提供高度优化的性能,后端源代码完全用CPython编写。

我们可以通过以下方式分析 pandas 中的数据:

  • 1.Series

  • 2.数据帧

Series

Series 是 pandas 中定义的一维(1-D)数组,可用于存储任何数据类型。

代码 #1

创建 Series

# 创建 Series 的程序

# 导入 Panda 库
import pandas as pd

# 使用数据和索引创建 Series
a = pd.Series(Data, index = Index)

在这里,数据可以是:

  • 一个标量值,可以是 integerValue、字符串
  • 可以是键值对的Python 字典
  • 一个Ndarray

注意:默认情况下,索引从 0、1、2、...(n-1) 开始,其中 n 是数据长度。

代码 #2

当 Data 包含标量值时

# 使用标量值创建 Series 的程序

# 数值数据
Data =[1, 3, 4, 5, 6, 2, 9]

# 使用默认索引值创建系列
s = pd.Series(Data)	

# 预定义的索引值
Index =['a', 'b', 'c', 'd', 'e', 'f', 'g']

# 创建具有预定义索引值的系列
si = pd.Series(Data, Index)

输出

具有默认索引的标量数据

带索引的标量数据

代码#3

当数据包含字典时

# 创建词典 Series 程序
dictionary ={'a':1, 'b':2, 'c':3, 'd':4, 'e':5}

# 创建字典类型 Series
sd = pd.Series(dictionary)

输出

字典类型数据

代码 #4

当 Data 包含 Ndarray

# 创建 ndarray series 的程序

# 定义二维数组
Data =[[2, 3, 4], [5, 6, 7]]

# 创建一系列二维数组
snd = pd.Series(Data)

输出

数据作为 Ndarray

数据框

DataFrames是 pandas 中定义的二维(2-D)数据结构,由行和列组成。

代码 #1

创建 DataFrame

# 创建 DataFrame 的程序

# 导入库
import pandas as pd

# 使用数据创建 DataFrame
a = pd.DataFrame(Data)

在这里,数据可以是:

  • 一本或多本词典
  • 一个或多个Series
  • 2D-numpy Ndarray

代码 #2

当数据是字典时

# 使用两个字典创建数据框的程序

# 定义字典 1
dict1 ={'a':1, 'b':2, 'c':3, 'd':4}

# 定义字典 2
dict2 ={'a':5, 'b':6, 'c':7, 'd':8, 'e':9}

# 用 dict1 和 dict2 定义数据
Data = {'first':dict1, 'second':dict2}

# 创建数据框
df = pd.DataFrame(Data)

输出

带有两个字典的 DataFrame

代码 #3

当数据是Series时

# 创建三个系列的Dataframe的程序
import pandas as pd

# 定义 series 1
s1 = pd.Series([1, 3, 4, 5, 6, 2, 9])

# 定义 series 2
s2 = pd.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3])

# 定义 series 3
s3 = pd.Series(['a', 'b', 'c', 'd', 'e'])	

# 定义 Data
Data ={'first':s1, 'second':s2, 'third':s3}

# 创建 DataFrame
dfseries = pd.DataFrame(Data)

输出

三个 Series 的 DataFrame

代码 #4

当 Data 为 2D-numpy ndarray注意:在创建 2D 数组的 DataFrame 时必须保持一个约束 - 2D 数组的维度必须相同。

# 从二维数组创建 DataFrame 的程序

# 导入库
import pandas as pd

# 定义 2d 数组 1
d1 =[[2, 3, 4], [5, 6, 7]]

# 定义 2d 数组 2
d2 =[[2, 4, 8], [1, 3, 9]]

# 定义 Data
Data ={'first': d1, 'second': d2}

# 创建 DataFrame
df2d = pd.DataFrame(Data)

输出

带有 2d ndarray 的 DataFrame

【相关推荐:Python3视频教程 】

以上就是Python利用Pandas进行数据分析的方法详解的详细内容,更多请关注zzsucai.com其它相关文章!

 标签: python,
积分说明:注册即送10金币,每日签到可获得更多金币,成为VIP会员可免金币下载! 充值积分充值会员更多说明»

讨论这个素材(0)回答他人问题或分享使用心得奖励金币

〒_〒 居然一个评论都没有……

表情  文明上网,理性发言!