python教程:Python数据分析之concat与merge函数(实例详解)

 所属分类:php教程

 浏览:150次-  评论: 0次-  更新时间:2022-09-29
描述:更多教程资料进入php教程获得。 本篇文章给大家带来了关于python的相关知识,其中主要介绍了关于数据合并的相关问题,包括了concat函数与me...
更多教程资料进入php教程获得。 本篇文章给大家带来了关于python的相关知识,其中主要介绍了关于数据合并的相关问题,包括了concat函数与merge函数等内容,下面一起来看一下,希望对大家有帮助。

程序员必备接口测试调试工具:立即使用
Apipost = Postman + Swagger + Mock + Jmeter
Api设计、调试、文档、自动化测试工具
后端、前端、测试,同时在线协作,内容实时同步

推荐学习:python视频教程

一、concat函数

  1. concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并
    pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, verify_integrity=False, sort=None, copy=True)
  2. 参数含义如下:
参数作用
axis表示连接的轴向,可以为0或者1,默认为0
join表示连接的方式,inner表示内连接,outer表示外连接,默认使用外连接
ignore_index接收布尔值,默认为False。如果设置为True,则表示清除现有索引并重置索引值
keys接收序列,表示添加最外层索引
levels用于构建MultiIndex的特定级别(唯一值)
names设置了keys和level参数后,用于创建分层级别的名称
verify_integerity检查新的连接轴是否包含重复项。接收布尔值,当设置为True时,如果有重复的轴将会抛出错误,默认为False
  1. 根据轴方向的不同,可以将堆叠分成横向堆叠纵向堆叠,默认采用的是纵向堆叠方式

这里是引用

  1. 在堆叠数据时,默认采用的是外连接(join参数设为outer)的方式进行合并,当然也可以通过join=inner设置为内连接的方式。

在这里插入图片描述

1)横向堆叠与外连接

import pandas as pd
df1=pd.DataFrame({'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})df1

在这里插入图片描述

df2=pd.DataFrame({'C':['C0','C1','C2'],
                  'D':['D0','D1','D2']})df2

在这里插入图片描述

横向堆叠合并df1和df2,采用外连接的方式

pd.concat([df1,df2],join='outer',axis=1)

在这里插入图片描述

2) 纵向堆叠与内链接

import pandas as pd
first=pd.DataFrame({'A':['A0','A1','A2'],
                   'B':['B0','B1','B2'],
                   'C':['C0','C1','C2']})first

在这里插入图片描述

second=pd.DataFrame({'B':['B3','B4','B5'],
                   'C':['C3','C4','C5'],
                    'D':['D3','D4','D5']})second

在这里插入图片描述

  1. 当使用concat()函数合并时,若是将axis参数的值设为0,且join参数的值设为inner,则代表着使用纵向堆叠与内连接的方式进行合并
pd.concat([first,second],join='inner',axis=0)

在这里插入图片描述

二、merge()函数

1)主键合并数据

  1. 在使用merge()函数进行合并时,默认会使用重叠的列索引做为合并键,并采用内连接方式合并数据,即取行索引重叠的部分。
import pandas as pd
left=pd.DataFrame({'key':['K0','K1','K2'],
                  'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})left

在这里插入图片描述

right=pd.DataFrame({'key':['K0','K1','K2','K3'],
                   'C':['C0','C1','C2','C3'],
                   'D':['D0','D1','D2','D3']})right

在这里插入图片描述

pd.merge(left,right,on='key')

在这里插入图片描述

2)merge()函数还支持对含有多个重叠列的DataFrame对象进行合并。

import pandas as pd
data1=pd.DataFrame({'key':['K0','K1','K2'],
                  'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})data1

在这里插入图片描述

data2=pd.DataFrame({'key':['K0','K5','K2','K4'],
                         'B':['B0','B1','B2','B5'],
                         'C':['C0','C1','C2','C3'],
                         'D':['D0','D1','D2','D3']})data2

在这里插入图片描述

pd.merge(data1,data2,on=['key','B'])

在这里插入图片描述

1)根据行索引合并数据

  1. join()方法能够通过索引或指定列来连接多个DataFrame对象
  2. join(other,on = None,how =‘left’,lsuffix =‘’,rsuffix =‘’,sort = False )
参数作用
on名称,用于连接列名
how可以从{‘‘left’’ ,‘‘right’’, ‘‘outer’’, ‘‘inner’’}中任选一个,默认使用左连接的方式。
sort根据连接键对合并的数据进行排序,默认为False
import pandas as pd
data3=pd.DataFrame({'A':['A0','A1','A2'],
                   'B':['B0','B1','B2']})data3

在这里插入图片描述

data4=pd.DataFrame({'C': ['C0', 'C1', 'C2'],
                         'D': ['D0', 'D1', 'D2']},
                     index=['a','b','c'])data3.join(data4,how='outer')  # 外连接

在这里插入图片描述

data3.join(data4,how='left')  #左连接

在这里插入图片描述

data3.join(data4,how='right')  #右连接

在这里插入图片描述

data3.join(data4,how='inner')  #内连接

在这里插入图片描述

import pandas as pd
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2'],
                      'key': ['K0', 'K1', 'K2']})left

在这里插入图片描述

right = pd.DataFrame({'C': ['C0', 'C1','C2'],
                         'D': ['D0', 'D1','D2']},
                        index=['K0', 'K1','K2'])right

s
on参数指定连接的列名

left.join(right,how='left',on='key')  #on参数指定连接的列名

在这里插入图片描述

2)合并重叠数据

当DataFrame对象中出现了缺失数据,而我们希望使用其他DataFrame对象中的数据填充缺失数据,则可以通过combine_first()方法为缺失数据填充。

import pandas as pdimport numpy as npfrom numpy import NAN
left = pd.DataFrame({'A': [np.nan, 'A1', 'A2', 'A3'],
                        'B': [np.nan, 'B1', np.nan, 'B3'],
                        'key': ['K0', 'K1', 'K2', 'K3']})left

在这里插入图片描述

right = pd.DataFrame({'A': ['C0', 'C1','C2'],
                         'B': ['D0', 'D1','D2']},
                         index=[1,0,2])right

在这里插入图片描述
用right的数据填充left缺失的部分

left.combine_first(right) # 用right的数据填充left缺失的部分

在这里插入图片描述

推荐学习:python视频教程

以上就是Python数据分析之concat与merge函数(实例详解)的详细内容,更多请关注zzsucai.com其它相关文章!

 标签: python,
积分说明:注册即送10金币,每日签到可获得更多金币,成为VIP会员可免金币下载! 充值积分充值会员更多说明»

讨论这个素材(0)回答他人问题或分享使用心得奖励金币

〒_〒 居然一个评论都没有……

表情  文明上网,理性发言!